On the number of q-ary quasi-perfect codes with covering radius 2 Научная публикация
Журнал |
Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586 |
||
---|---|---|---|
Вых. Данные | Год: 2022, Том: 90, Номер: 8, Страницы: 1713-1719 Страниц : 7 DOI: 10.1007/s10623-022-01070-y | ||
Ключевые слова | Galois geometry; Generalized Reed–Muller codes; Quasi-perfect codes; Switching construction | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0018 |
Реферат:
In this paper we present a family of q-ary nonlinear quasi-perfect codes with covering radius 2. The codes have length n= qm and size M= qn-m-1 where q is a prime power, q≥ 3 , m is an integer, m≥ 2. We prove that there are more than qqcn nonequivalent such codes of length n, for all sufficiently large n and a constant c=1q-ε. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Библиографическая ссылка:
Romanov A.M.
On the number of q-ary quasi-perfect codes with covering radius 2
Designs, Codes and Cryptography. 2022. V.90. N8. P.1713-1719. DOI: 10.1007/s10623-022-01070-y WOS Scopus РИНЦ OpenAlex
On the number of q-ary quasi-perfect codes with covering radius 2
Designs, Codes and Cryptography. 2022. V.90. N8. P.1713-1719. DOI: 10.1007/s10623-022-01070-y WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000815470500003 |
Scopus: | 2-s2.0-85132720135 |
РИНЦ: | 49151513 |
OpenAlex: | W3208605955 |