Sciact
  • EN
  • RU

ON DETECTING ALTERNATIVES BY ONE-PARAMETRIC RECURSIVE RESIDUALS Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 1, Pages: 292-308 Pages count : 17 DOI: 10.33048/semi.2022.19.024
Tags Close alternative; Linear regression; Recursive residuals; Weak convergence; Wiener process
Authors Sakhanenko A.I. 1,2
Affiliations
1 Novosibirsk State University, 2,Pirogova str., Novosibirsk, 630090, Russian Federation
2 Sobolev Institute of Mathematics, 4,Acad. Koptyug ave, Novosibirsk, 630090, Russian Federation

Funding (1)

1 Mathematical Center in Akademgorodok 075-15-2019-1675

Abstract: We consider a linear regression model with one unknown parameter which is estimated by the least squares method. We suppose that, in reality, the given observations satisfy a close alternative to the linear regression model. We investigate the limiting behaviour of the normalized process of sums of recursive residuals. Such residuals were introduced by Brown, Durbin and Evans (1975) and their sums are a convenient tool for detecting discrepancy between observations and the studied model. In particular, under less restrictive assumptions we generalize a key result from Bischoff (2016). © 2022. Sakhanenko A.I.
Cite: Sakhanenko A.I.
ON DETECTING ALTERNATIVES BY ONE-PARAMETRIC RECURSIVE RESIDUALS
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.292-308. DOI: 10.33048/semi.2022.19.024 WOS Scopus РИНЦ
Identifiers:
Web of science: WOS:000886649700002
Scopus: 2-s2.0-85132565540
Elibrary: 49384635
Citing: Пока нет цитирований
Altmetrics: