ON DETECTING ALTERNATIVES BY ONE-PARAMETRIC RECURSIVE RESIDUALS Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 19, Number: 1, Pages: 292-308 Pages count : 17 DOI: 10.33048/semi.2022.19.024 | ||||
Tags | Close alternative; Linear regression; Recursive residuals; Weak convergence; Wiener process | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Mathematical Center in Akademgorodok | 075-15-2019-1675 |
Abstract:
We consider a linear regression model with one unknown parameter which is estimated by the least squares method. We suppose that, in reality, the given observations satisfy a close alternative to the linear regression model. We investigate the limiting behaviour of the normalized process of sums of recursive residuals. Such residuals were introduced by Brown, Durbin and Evans (1975) and their sums are a convenient tool for detecting discrepancy between observations and the studied model. In particular, under less restrictive assumptions we generalize a key result from Bischoff (2016). © 2022. Sakhanenko A.I.
Cite:
Sakhanenko A.I.
ON DETECTING ALTERNATIVES BY ONE-PARAMETRIC RECURSIVE RESIDUALS
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.292-308. DOI: 10.33048/semi.2022.19.024 WOS Scopus РИНЦ
ON DETECTING ALTERNATIVES BY ONE-PARAMETRIC RECURSIVE RESIDUALS
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.292-308. DOI: 10.33048/semi.2022.19.024 WOS Scopus РИНЦ
Identifiers:
Web of science: | WOS:000886649700002 |
Scopus: | 2-s2.0-85132565540 |
Elibrary: | 49384635 |
Citing:
Пока нет цитирований