Sciact
  • EN
  • RU

ON DETECTING ALTERNATIVES BY ONE-PARAMETRIC RECURSIVE RESIDUALS Научная публикация

Журнал Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Вых. Данные Год: 2022, Том: 19, Номер: 1, Страницы: 292-308 Страниц : 17 DOI: 10.33048/semi.2022.19.024
Ключевые слова Close alternative; Linear regression; Recursive residuals; Weak convergence; Wiener process
Авторы Sakhanenko A.I. 1,2
Организации
1 Novosibirsk State University, 2,Pirogova str., Novosibirsk, 630090, Russian Federation
2 Sobolev Institute of Mathematics, 4,Acad. Koptyug ave, Novosibirsk, 630090, Russian Federation

Информация о финансировании (1)

1 Математический центр в Академгородке 075-15-2019-1675

Реферат: We consider a linear regression model with one unknown parameter which is estimated by the least squares method. We suppose that, in reality, the given observations satisfy a close alternative to the linear regression model. We investigate the limiting behaviour of the normalized process of sums of recursive residuals. Such residuals were introduced by Brown, Durbin and Evans (1975) and their sums are a convenient tool for detecting discrepancy between observations and the studied model. In particular, under less restrictive assumptions we generalize a key result from Bischoff (2016). © 2022. Sakhanenko A.I.
Библиографическая ссылка: Sakhanenko A.I.
ON DETECTING ALTERNATIVES BY ONE-PARAMETRIC RECURSIVE RESIDUALS
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.292-308. DOI: 10.33048/semi.2022.19.024 WOS Scopus РИНЦ
Идентификаторы БД:
Web of science: WOS:000886649700002
Scopus: 2-s2.0-85132565540
РИНЦ: 49384635
Цитирование в БД: Пока нет цитирований
Альметрики: