Sciact
  • EN
  • RU

ON THE MAXIMALITY OF DEGREES OF METRICS UNDER COMPUTABLE REDUCIBILITY Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 1, Pages: 248-258 Pages count : 11 DOI: 10.33048/semi.2022.19.019
Tags Cauchy representation; computable analysis; computable metric space; reducibility of representations
Authors Kornev R.A. 1
Affiliations
1 Sobolev Institute of Mathematics, 4, Acad. Koptyug ave., Novosibirsk, 630090, Russian Federation

Funding (1)

1 Russian Foundation for Basic Research 20-51-50001

Abstract: We study the semilattice CMc(X) of degrees of computable metrics on a Polish space X under computable reducibility. It is proved that this semilattice does not have maximal elements if X is a noncompact space. It is also shown that the degree of the standard metric on the unit interval is maximal in the respective semilattice. © 2022. Kornev R. All Rights Reserved.
Cite: Kornev R.A.
ON THE MAXIMALITY OF DEGREES OF METRICS UNDER COMPUTABLE REDUCIBILITY
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.248-258. DOI: 10.33048/semi.2022.19.019 WOS Scopus РИНЦ
Identifiers:
Web of science: WOS:000793381900007
Scopus: 2-s2.0-85129730666
Elibrary: 49384631
Citing:
DB Citing
Scopus 1
Web of science 1
Elibrary 1
Altmetrics: