Sciact
  • EN
  • RU

Wiener Index of Families of Unicyclic Graphs Obtained From a Tree Научная публикация

Журнал Match
ISSN: 0340-6253
Вых. Данные Год: 2022, Том: 88, Номер: 2, Страницы: 461-470 Страниц : 10 DOI: 10.46793/match.88-2.461D
Авторы Dobrynin A.A. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017

Реферат: The Wiener index W(G) of a graph G is the sum of distances between all vertices of G. The Wiener index of a family G of connected graphs is defined as the sum of the Wiener indices of its members, W(G) = Σ G∈G W(G). Let Ue be a unicyclic graph obtained by replacing an edge e of a tree T with a fixed length cycle. A simple relation between Wiener indices of the family {Ue | e ∈ E(T)} and a tree T is presented for certain positions of the cycle. © 2022 University of Kragujevac, Faculty of Science. All rights reserved.
Библиографическая ссылка: Dobrynin A.A.
Wiener Index of Families of Unicyclic Graphs Obtained From a Tree
Match. 2022. V.88. N2. P.461-470. DOI: 10.46793/match.88-2.461D WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000841776500007
Scopus: 2-s2.0-85129622049
РИНЦ: 48585971
OpenAlex: W4226159985
Цитирование в БД:
БД Цитирований
Scopus 4
Web of science 3
OpenAlex 4
РИНЦ 3
Альметрики: