Sciact
  • EN
  • RU

Transparent Clustering with Cyclic Probabilistic Causal Models Научная публикация

Журнал Studies in Computational Intelligence
ISSN: 1860-949X , E-ISSN: 1860-9503
Вых. Данные Год: 2022, Том: 1014, Страницы: 239-253 Страниц : 15 DOI: 10.1007/978-3-030-93119-3_9
Авторы Vityaev E.E. 1 , Pak B. 2
Организации
1 Sobolev Institute of Mathematics of SО RAS, 4 Acad. Koptyug avenue, Novosibirsk, Russian Federation
2 Novosibirsk State University, Novosibirsk, Russian Federation

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН 0314-2019-0002
2 Российский фонд фундаментальных исследований 19-01-00331

Реферат: In the previous work data clusters where discovered and visualized by causal models, used in cognitive science. Centers of clusters are presented by prototypes of clusters, formed by causal models, in accordance with the prototype theory of concepts, explored in cognitive science. In this work we describe the system of transparent analysis of such clasterization that bring the light to the interconnection between (1) set of objects with there characteristics (2) probabilistic causal relations between objects characteristics (3) causal models—fixpoints of probabilistic causal relations that form prototypes of clusters (4) clusters—set of objects that defined by prototypes. For that purpose we use a novel mathematical apparatus—probabilistic generalization of formal concepts—for discovering causal models via cyclical causal relations (fixpoints of causal relations). This approach is illustrated with a case study. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Библиографическая ссылка: Vityaev E.E. , Pak B.
Transparent Clustering with Cyclic Probabilistic Causal Models
Studies in Computational Intelligence. 2022. V.1014. P.239-253. DOI: 10.1007/978-3-030-93119-3_9 Scopus РИНЦ OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85131822076
РИНЦ: 48719367
OpenAlex: W4285263297
Цитирование в БД: Пока нет цитирований
Альметрики: