Sciact
  • EN
  • RU

Donkin–Koppinen filtration for gl(m|n) and generalized Schur superalgebras Научная публикация

Журнал Transformation Groups
ISSN: 1083-4362 , E-ISSN: 1531-586X
Вых. Данные Год: 2023, Том: 28, Номер: 2, Страницы: 911–949 Страниц : 39 DOI: 10.1007/s00031-022-09714-y
Авторы Marko F. 1 , Zubkov A.N. 2,3
Организации
1 The Pennsylvania State University, 76 University Drive, Hazleton, PA 18202, United States
2 United Arab Emirates University, Department of Mathematical Sciences, P.O. Box 15551, Abu Dhabi, Al Ain, United Arab Emirates
3 Sobolev Institute of Mathematics, Omsk Branch, Pevtzova 13, Omsk, 644043, Russian Federation

Реферат: The paper contains results that characterize the Donkin–Koppinen filtration of the coordinate superalgebra K[G] of the general linear supergroup G = GL(m|n) by its subsupermodules CΓ = OΓ(K[G]). Here, the supermodule CΓ is the largest subsupermodule of K[G] whose composition factors are irreducible supermodules of highest weight ⋋, where ⋋ belongs to a finitely-generated ideal Γ of the poset X(T)+ of dominant weights of G. A decomposition of G as a product of subsuperschemes U–×Gev×U+ induces a superalgebra isomorphism ϕ*K[U–]⊗K[Gev]⊗K[U+]≃K[G]. We show that CΓ=ϕ*(K[U–]⊗MΓK[U+]), where MΓ=OΓ(K[Gev]). Using the basis of the module MΓ, given by generalized bideterminants, we describe a basis of CΓ. Since each CΓ is a subsupercoalgebra of K[G], its dual CΓ∗=SΓ is a (pseudocompact) superalgebra called the generalized Schur superalgebra. There is a natural superalgebra morphism πΓ : Dist(G) → SΓ such that the image of the distribution algebra Dist(G) is dense in SΓ. For the ideal X(T)l+, of all weights of fixed length l, the generators of the kernel of πX(T)l+ are described.
Библиографическая ссылка: Marko F. , Zubkov A.N.
Donkin–Koppinen filtration for gl(m|n) and generalized Schur superalgebras
Transformation Groups. 2023. V.28. N2. P.911–949. DOI: 10.1007/s00031-022-09714-y WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 15 авг. 2020 г.
Принята к публикации: 18 апр. 2021 г.
Опубликована online: 31 мар. 2022 г.
Опубликована в печати: 15 июн. 2023 г.
Идентификаторы БД:
Web of science: WOS:000777220100002
Scopus: 2-s2.0-85127434483
РИНЦ: 48424162
OpenAlex: W3049042986
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 3
Альметрики: