On the Riemann-Hurwitz formula for regular graph coverings Научная публикация
Журнал |
Contemporary Mathematics
ISSN: 0271-4132 , E-ISSN: 1098-3627 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 776, Страницы: 301-309 Страниц : 9 DOI: 10.1090/conm/776/15618 | ||||||
Ключевые слова | Automorphism group; Branched covering; Graph; Harmonic map; Invertible edge; Semi-edge | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 19-41-02005 |
Реферат:
The aim of this paper is to present a few versions of the Riemann-Hurwitz formula for a regular branched covering of graphs. By a graph, we mean a finite connected multigraph. The genus of a graph is defined as the rank of the first homology group. We consider a finite group acting on a graph, possibly with fixed and invertible edges, and the respective factor graph. Then, the obtained Riemann-Hurwitz formula relates genus of the graph with genus of the factor graph and orders of the vertex and edge stabilizers. © 2022 American Mathematical Society.
Библиографическая ссылка:
Mednykh A.
On the Riemann-Hurwitz formula for regular graph coverings
Contemporary Mathematics. 2022. V.776. P.301-309. DOI: 10.1090/conm/776/15618 Scopus РИНЦ OpenAlex
On the Riemann-Hurwitz formula for regular graph coverings
Contemporary Mathematics. 2022. V.776. P.301-309. DOI: 10.1090/conm/776/15618 Scopus РИНЦ OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-85129418226 |
РИНЦ: | 48582794 |
OpenAlex: | W4210686978 |