Sciact
  • EN
  • RU

On the Special Identities of Gelfand–Dorfman Algebras Научная публикация

Журнал Experimental Mathematics
ISSN: 1058-6458 , E-ISSN: 1944-950X
Вых. Данные Год: 2022, DOI: 10.1080/10586458.2022.2041134
Ключевые слова Gelfand–Dorfman algebra; Gröbner basis; operad; Poisson algebra; special identity
Авторы Kolesnikov P.S. 1 , Sartayev B.K. 1,2
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Suleyman Demirel University, Kaskelen, Kazakhstan

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН 0314-2019-0001

Реферат: A Gelfand–Dorfman algebra (GD-algebra) is said to be special if it can be embedded into a differential Poisson algebra. In this paper, we prove that the class of all special GD-algebras is closed with respect to homomorphisms and thus forms a variety. We describe a technique for finding potentially all special identities of GD-algebras and derive two known special identities of degree 4 in this way. By computing the Gröbner basis for the corresponding shuffle operad, we show that these two identities imply all special ones up to degree 5.
Библиографическая ссылка: Kolesnikov P.S. , Sartayev B.K.
On the Special Identities of Gelfand–Dorfman Algebras
Experimental Mathematics. 2022. DOI: 10.1080/10586458.2022.2041134 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000771257500001
Scopus: 2-s2.0-85126741159
РИНЦ: 48193754
OpenAlex: W4302395996
Цитирование в БД:
БД Цитирований
Scopus 10
Web of science 7
OpenAlex 11
РИНЦ 2
Альметрики: