Sciact
  • EN
  • RU

On the Wiener index of two families generated by joining a graph to a tree Научная публикация

Журнал Discrete Mathematics Letters
ISSN: 2664-2557
Вых. Данные Год: 2022, Том: 9, Страницы: 44-48 Страниц : 5 DOI: 10.47443/dml.2021.s208
Ключевые слова Distance in graphs; Graph invariant; Wiener index
Авторы Dobrynin A.A. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017

Реферат: The Wiener index W(G) of a graph G is the sum of distances between all vertices of G. The Wiener index of a family of connected graphs is defined as the sum of the Wiener indices of its members. Two families of graphs can be constructed by identifying a fixed vertex of an arbitrary graph F with vertices or subdivision vertices of an arbitrary tree T of order n. Let Gv be a graph obtained by identifying a fixed vertex of F with a vertex v of T. The first family V = {Gv | v ∈ V (T)} contains n graphs. Denote by Gve a graph obtained by identifying the same fixed vertex of F with the subdivision vertexve of an edge e in T. The second family ε = {Gve | e ∈ E(T)} contains n - 1 graphs. It is proved that W(V) = W(ε) if and only if W(F) = 2W(T).
Библиографическая ссылка: Dobrynin A.A.
On the Wiener index of two families generated by joining a graph to a tree
Discrete Mathematics Letters. 2022. V.9. P.44-48. DOI: 10.47443/dml.2021.s208 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000894319900008
Scopus: 2-s2.0-85126646641
РИНЦ: 48194240
OpenAlex: W4210657334
Цитирование в БД:
БД Цитирований
Scopus 4
Web of science 2
OpenAlex 4
РИНЦ 2
Альметрики: