Sciact
  • EN
  • RU

On the embedding of left-symmetric algebras into differential Perm-algebras Full article

Journal Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125
Output data Year: 2022, Volume: 50, Number: 8, Pages: 3246-3260 Pages count : 15 DOI: 10.1080/00927872.2022.2028798
Tags derivation; dialgebra; identity; Left-symmetric algebra; Novikov algebra
Authors Kolesnikov P.S. 1 , Sartayev B.K. 1,2
Affiliations
1 Department of Algebra, Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
2 Department of Engineering and Natural Sciences, Suleyman Demirel University, Kaskelen, Kazakhstan

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0001

Abstract: Given an associative algebra satisfying the left commutativity identity abc = bac (Perm-algebra) with a derivation d, the new operation (Formula presented.) is left-symmetric (pre-Lie). We derive necessary and sufficient conditions for a left-symmetric algebra to be embeddable into a differential Perm-algebra.
Cite: Kolesnikov P.S. , Sartayev B.K.
On the embedding of left-symmetric algebras into differential Perm-algebras
Communications in Algebra. 2022. V.50. N8. P.3246-3260. DOI: 10.1080/00927872.2022.2028798 WOS Scopus РИНЦ OpenAlex
Identifiers:
Web of science: WOS:000753900200001
Scopus: 2-s2.0-85124909287
Elibrary: 48150969
OpenAlex: W3168678759
Citing:
DB Citing
Scopus 9
Web of science 7
OpenAlex 6
Elibrary 2
Altmetrics: