On the embedding of left-symmetric algebras into differential Perm-algebras Научная публикация
Журнал |
Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 50, Номер: 8, Страницы: 3246-3260 Страниц : 15 DOI: 10.1080/00927872.2022.2028798 | ||||
Ключевые слова | derivation; dialgebra; identity; Left-symmetric algebra; Novikov algebra | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | 0314-2019-0001 |
Реферат:
Given an associative algebra satisfying the left commutativity identity abc = bac (Perm-algebra) with a derivation d, the new operation (Formula presented.) is left-symmetric (pre-Lie). We derive necessary and sufficient conditions for a left-symmetric algebra to be embeddable into a differential Perm-algebra.
Библиографическая ссылка:
Kolesnikov P.S.
, Sartayev B.K.
On the embedding of left-symmetric algebras into differential Perm-algebras
Communications in Algebra. 2022. V.50. N8. P.3246-3260. DOI: 10.1080/00927872.2022.2028798 WOS Scopus РИНЦ OpenAlex
On the embedding of left-symmetric algebras into differential Perm-algebras
Communications in Algebra. 2022. V.50. N8. P.3246-3260. DOI: 10.1080/00927872.2022.2028798 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: | WOS:000753900200001 |
Scopus: | 2-s2.0-85124909287 |
РИНЦ: | 48150969 |
OpenAlex: | W3168678759 |