Sciact
  • EN
  • RU

Normal Cayley digraphs of cyclic groups with CI-property Научная публикация

Журнал Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125
Вых. Данные Год: 2022, Том: 50, Номер: 7, Страницы: 2911-2920 Страниц : 10 DOI: 10.1080/00927872.2021.2022156
Ключевые слова Cayley digraph; CI-group; DCI-group; NCI-group; NDCI-group
Авторы Xie J.-H. 1 , Feng Y.-Q. 1 , Ryabov G. 2,3 , Liu Y.-L. 1
Организации
1 Department of Mathematics, Beijing Jiaotong University, Beijing, China
2 Laboratory of Fundamental Problems of Mathematics in Digital Technologies, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
3 Department of Computer Science in Economics, Novosibirsk State Technical University, Novosibirsk, Russian Federation

Информация о финансировании (1)

1 Российский научный фонд 19-11-00039

Реферат: A Cayley (di)graph (Formula presented.) of a group G is called normal if the right regular representation of G is normal in the full automorphism group of (Formula presented.) and a CI-(di)graph if for every Cayley (di)graph (Formula presented.) implies that there is (Formula presented.) such that (Formula presented.) We call a group G an NDCI-group or NCI-group if all normal Cayley digraphs or graphs of G are CI-digraphs or CI-graphs, respectively. We prove that a cyclic group of order n is an NDCI-group if and only if (Formula presented.) and an NCI-group if and only if either n = 8 or (Formula presented.).
Библиографическая ссылка: Xie J.-H. , Feng Y.-Q. , Ryabov G. , Liu Y.-L.
Normal Cayley digraphs of cyclic groups with CI-property
Communications in Algebra. 2022. V.50. N7. P.2911-2920. DOI: 10.1080/00927872.2021.2022156 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000744322500001
Scopus: 2-s2.0-85122965343
РИНЦ: 48128107
OpenAlex: W4206605569
Цитирование в БД:
БД Цитирований
Scopus 2
Web of science 2
OpenAlex 2
Альметрики: