Sciact
  • EN
  • RU

Recurrent generalization of f-polynomials for virtual knots and links Научная публикация

Журнал Symmetry
ISSN: 2073-8994
Вых. Данные Год: 2022, Том: 14, Номер: 1, Номер статьи : 15, Страниц : DOI: 10.3390/sym14010015
Ключевые слова Difference writhe; Flat virtual knot invariant; Virtual knot invariant
Авторы Gill A. 1 , Ivanov M. 2 , Prabhakar M. 1 , Vesnin A. 3,4,5
Организации
1 Department of Mathematics, Indian Institute of Technology Ropar, Punjab, Rupnagar, 140001, India
2 Laboratory of Topology and Dynamics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
3 Regional Scientific and Educational Mathematical Center, Tomsk State University, Tomsk, 634050, Russian Federation
4 Faculty of Mathematics, National Research University “Higher School of Economics”, Moscow, 109028, Russian Federation
5 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Информация о финансировании (2)

1 Российский фонд фундаментальных исследований 19-01-00569
2 Российский научный фонд 20-61-46005

Реферат: F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman’s affine index polynomial and use smoothing in the classical crossing of a virtual knot diagram. In this paper, we introduce weight functions for ordered orientable virtual and flat virtual links. A flat virtual link is an equivalence class of virtual links with respect to a local symmetry changing a type of classical crossing in a diagram. By considering three types of smoothing in classical crossings of a virtual link diagram and suitable weight functions, there is provided a recurrent construction for new invariants. It is demonstrated by explicit examples that newly defined polynomial invariants are stronger than F-polynomials.
Библиографическая ссылка: Gill A. , Ivanov M. , Prabhakar M. , Vesnin A.
Recurrent generalization of f-polynomials for virtual knots and links
Symmetry. 2022. V.14. N1. 15 . DOI: 10.3390/sym14010015 WOS Scopus РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000757263800001
Scopus: 2-s2.0-85121811431
РИНЦ: 47546210
OpenAlex: W3211694458
Цитирование в БД:
БД Цитирований
Scopus 2
Web of science 2
OpenAlex 2
РИНЦ 1
Альметрики: