Sciact
  • EN
  • RU

An improved genetic algorithm for the resource-constrained project scheduling problem Научная публикация

Конференция XIII International Conference Optimization and Applications
26-30 сент. 2022 , Петровац
Сборник Advances in Optimization and Applications : 13th International Conference, OPTIMA 2022, Petrovac, Montenegro, September 26–30, 2022, Revised Selected Papers
Сборник, Springer Cham. 2023. 197 c. ISBN 978-3-031-22990-9.
Журнал Communications in Computer and Information Science
ISSN: 1865-0929
Вых. Данные Год: 2023, Том: 1739, Страницы: 35-47 Страниц : 13 DOI: 10.1007/978-3-031-22990-9_3
Ключевые слова Project management, Resource-constrained project, scheduling problem, Renewable resources ,Genetic algorithms ,PCPLIB
Авторы Goncharov Evgenii N. 1,2
Организации
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0019

Реферат: This paper presents an improved genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The schedules are constructed using a heuristic that builds active schedules based on priorities that takes into account the degree of criticality for the resources. The degree of resource's criticality is derived from the solution of a relaxed problem with a constraint on accumulative resources. The computational results with instances from the PCPLIB library validate the effectiveness of the proposed algorithm. We have obtain some of the best average deviations of the solutions from the critical path value. The best known solutions have been improved for some instances from the PCPLIB.
Библиографическая ссылка: Goncharov E.N.
An improved genetic algorithm for the resource-constrained project scheduling problem
В сборнике Advances in Optimization and Applications : 13th International Conference, OPTIMA 2022, Petrovac, Montenegro, September 26–30, 2022, Revised Selected Papers. – Springer Cham., 2023. – C.35-47. – ISBN 978-3-031-22990-9. DOI: 10.1007/978-3-031-22990-9_3 Scopus OpenAlex
Даты:
Принята к публикации: 17 авг. 2022 г.
Опубликована в печати: 1 янв. 2023 г.
Опубликована online: 1 янв. 2023 г.
Идентификаторы БД:
Scopus: 2-s2.0-85148040365
OpenAlex: W4313343007
Цитирование в БД:
БД Цитирований
Scopus 1
Альметрики: