Sciact
  • EN
  • RU

Bounded Turning in Möbius Structures Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2022, Volume: 63, Number: 5, Pages: 819-833 Pages count : 15 DOI: 10.1134/S0037446622050020
Tags 517.54; continuum with bounded turning; local connectedness; Möbius structure; Ptolemaic Möbius space; quasimöbius arc; quasimöbiusly connected space
Authors Aseev Vladislav Vasilʹevich 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics 0314-2019-0007

Abstract: We study a Möbius-invariant generalization, called BTR, of the classical property of bounded turning in a metric space which was introduced by Tukia and Väisälä in 1980 and suitable for use in Ptolemaic Möbius structures in the sense of Buyalo. In particular, we prove that every continuum with the BTR property, lying on the boundary of a domain in the complex plane, is locally connected.
Cite: Aseev V.V.
Bounded Turning in Möbius Structures
Siberian Mathematical Journal. 2022. V.63. N5. P.819-833. DOI: 10.1134/S0037446622050020 WOS Scopus РИНЦ OpenAlex
Original: Асеев В.В.
СВОЙСТВО ОГРАНИЧЕННОГО ИСКРИВЛЕНИЯ В МЕБИУСОВЫХ СТРУКТУРАХ
Сибирский математический журнал. 2022. Т.63. №5. С.975-993. DOI: 10.33048/smzh.2022.63.502 РИНЦ
Identifiers:
Web of science: WOS:000863681600002
Scopus: 2-s2.0-85139178108
Elibrary: 51564665
OpenAlex: W4300594538
Citing: Пока нет цитирований
Altmetrics: