Sciact
  • EN
  • RU

The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2020, Volume: 61, Number: 1, Pages: 11-20 Pages count : 10 DOI: 10.1134/s0037446620010024
Authors AlHussein H. 1 , Kolesnikov P.S. 2
Affiliations
1 Novosibirsk State University, Novosibirsk, Russia
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: The Manturov (2, 3)-group G 23 is the group generated by three elements a, b, and c with defining relations a 2 = b 2 = c 2 = (abc) 2 = 1. We explicitly calculate the Anick chain complex for G 23 by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra kG 23 with coefficients in all 1-dimensional bimodules over a field k of characteristic zero.
Cite: AlHussein H. , Kolesnikov P.S.
The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group
Siberian Mathematical Journal. 2020. V.61. N1. P.11-20. DOI: 10.1134/s0037446620010024 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000516567300002
Scopus: 2-s2.0-105002990351
OpenAlex: W3008143067
Citing:
DB Citing
OpenAlex 1
Web of science 2
Scopus 2
Altmetrics: