Sciact
  • EN
  • RU

The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group Научная публикация

Журнал Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Вых. Данные Год: 2020, Том: 61, Номер: 1, Страницы: 11-20 Страниц : 10 DOI: 10.1134/s0037446620010024
Авторы AlHussein H. 1 , Kolesnikov P.S. 2
Организации
1 Novosibirsk State University, Novosibirsk, Russia
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Реферат: The Manturov (2, 3)-group G 23 is the group generated by three elements a, b, and c with defining relations a 2 = b 2 = c 2 = (abc) 2 = 1. We explicitly calculate the Anick chain complex for G 23 by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra kG 23 with coefficients in all 1-dimensional bimodules over a field k of characteristic zero.
Библиографическая ссылка: AlHussein H. , Kolesnikov P.S.
The Anick Complex and the Hochschild Cohomology of the Manturov (2,3)-Group
Siberian Mathematical Journal. 2020. V.61. N1. P.11-20. DOI: 10.1134/s0037446620010024 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000516567300002
Scopus: 2-s2.0-105002990351
OpenAlex: W3008143067
Цитирование в БД:
БД Цитирований
OpenAlex 1
Web of science 2
Scopus 2
Альметрики: