Sciact
  • EN
  • RU

Completely regular codes in the n-dimensional rectangular grid Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 2, Pages: 861-869 Pages count : 9 DOI: 10.33048/semi.2022.19.072
Tags n-dimensional rectangular grid, completely regular code, intersection array, covering radius, perfect coloring
Authors Avgustinovich S.V. 1 , Vasil'eva A.Yu. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0017

Abstract: It is proved that two sequences of the intersection array of an arbitrary completely regular code in the $n$-dimensional rectangular grid are monotonic. It is shown that the minimal distance of an arbitrary completely regular code is at most 4 and the covering radius of an irreducible completely regular code in the grid is at most $2n$.
Cite: Avgustinovich S.V. , Vasil'eva A.Y.
Completely regular codes in the n-dimensional rectangular grid
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.861-869. DOI: 10.33048/semi.2022.19.072 WOS Scopus РИНЦ
Identifiers:
Web of science: WOS:000886649600037
Scopus: 2-s2.0-85145842393
Elibrary: 50336858
Citing:
DB Citing
Web of science 1
Scopus 1
Altmetrics: