Completely regular codes in the n-dimensional rectangular grid Научная публикация
| Журнал |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||
|---|---|---|---|---|---|
| Вых. Данные | Год: 2022, Том: 19, Номер: 2, Страницы: 861-869 Страниц : 9 DOI: 10.33048/semi.2022.19.072 | ||||
| Ключевые слова | n-dimensional rectangular grid, completely regular code, intersection array, covering radius, perfect coloring | ||||
| Авторы |
|
||||
| Организации |
|
Информация о финансировании (1)
| 1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0017 |
Реферат:
It is proved that two sequences of the intersection array of an arbitrary completely regular code in the $n$-dimensional rectangular grid are monotonic. It is shown that the minimal distance of an arbitrary completely regular code is at most 4 and the covering radius of an irreducible completely regular code in the grid is at most $2n$.
Библиографическая ссылка:
Avgustinovich S.V.
, Vasil'eva A.Y.
Completely regular codes in the n-dimensional rectangular grid
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.861-869. DOI: 10.33048/semi.2022.19.072 WOS Scopus РИНЦ
Completely regular codes in the n-dimensional rectangular grid
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.861-869. DOI: 10.33048/semi.2022.19.072 WOS Scopus РИНЦ
Идентификаторы БД:
| Web of science: | WOS:000886649600037 |
| Scopus: | 2-s2.0-85145842393 |
| РИНЦ: | 50336858 |