Sciact
  • EN
  • RU

Two-dimensional interpolation of functions with large gradients in boundary layers Научная публикация

Журнал Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Вых. Данные Год: 2022, Том: 19, Номер: 2, Страницы: 688-697 Страниц : 10 DOI: 10.33048/semi.2022.19.057
Ключевые слова Bakhvalov mesh; Error estimate.; Exponential boundary layer; Function of two variables; Lagrange polynomial
Авторы Задорин Александр Иванович 1
Организации
1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН».

Информация о финансировании (2)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0016
2 Российский фонд фундаментальных исследований 20-01-00650

Реферат: The question of interpolation of a function of two variables with large gradients in the regions of the boundary layer is considered. The interpolated function has a representation as a sum of regular and boundary layer components. Such the representation is valid due to the Shishkin decomposition for the solution of the singularly perturbed problem. The development of interpolation formulas for such functions is relevant, since in the case of a uniform grid the error can be of the order of O(1). In the rectangular domain a Bakhvalov mesh is applied, which condenses in the boundary layers. The initial domain is divided into rectangular cells. In each such cell, two-dimensional interpolation based on the Lagrange polynomial is applied. The interpolation formula contains k interpolation nodes in each direction. For each cell, an error estimate is obtained taking into account uniformity in a small parameter. An estimate of the stability of the interpolation formula is obtained on a two-dimensional grid from the class of Bakhvalov grids. The results of numerical experiments are consistent with the obtained error estimates. The study of the interpolation formula is necessary to continue the solution of the difference scheme from the grid nodes to the entire original domain.
Библиографическая ссылка: Zadorin A.I.
Two-dimensional interpolation of functions with large gradients in boundary layers
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.688-697. DOI: 10.33048/semi.2022.19.057 WOS Scopus РИНЦ
Идентификаторы БД:
Web of science: WOS:000886649600023
Scopus: 2-s2.0-85141151752
РИНЦ: 50336843
Цитирование в БД: Пока нет цитирований
Альметрики: