A census of tetrahedral hyperbolic manifolds Научная публикация
Журнал |
Experimental Mathematics
ISSN: 1058-6458 , E-ISSN: 1944-950X |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2016, Том: 25, Номер: 4, Страницы: 466-481 Страниц : 16 DOI: 10.1080/10586458.2015.1114436 | ||||||||||
Ключевые слова | Bianchi orbifolds; Census; Hyperbolic 3-manifolds; Regular ideal tetrahedron; Tetrahedral manifolds | ||||||||||
Авторы |
|
||||||||||
Организации |
|
Реферат:
We call a cusped hyperbolic 3-manifold tetrahedral if it can be decomposed into regular ideal tetrahedra. Following an earlier publication by three of the authors, we give a census of all tetrahedral manifolds and all of their combinatorial tetrahedral tessellations with at most 25 (orientable case) and 21 (non-orientable case) tetrahedra. Our isometry classification uses certified canonical cell decompositions (based onwork by Dunfield, Hoffman, and Licata) and isomorphism signatures (an improvement of dehydration sequences by Burton). The tetrahedral census comes in Regina as well as SnapPy format, and we illustrate its features.
Библиографическая ссылка:
Vesnin A.Y.
, Fominykh E.
, Garoufalidis S.
, Goerner M.
, Tarkaev V.
A census of tetrahedral hyperbolic manifolds
Experimental Mathematics. 2016. V.25. N4. P.466-481. DOI: 10.1080/10586458.2015.1114436 WOS Scopus OpenAlex
A census of tetrahedral hyperbolic manifolds
Experimental Mathematics. 2016. V.25. N4. P.466-481. DOI: 10.1080/10586458.2015.1114436 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000392133600008 |
Scopus: | 2-s2.0-84968547400 |
OpenAlex: | W2131123874 |