Relatively Maximal Subgroups of Odd Index in Symmetric Groups Full article
Journal |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2022, Volume: 61, Number: 2, Pages: 104-124 Pages count : 21 DOI: 10.1007/s10469-022-09680-0 | ||||||
Tags | complete class; maximal x-subgroup; subgroup of odd index; submaximal x-subgroup; symmetric group | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 19-71-10067 |
Abstract:
Let X be a class of finite groups which contains a group of order 2 and is closed under subgroups, homomorphic images, and extensions. We define the concept of an Xadmissible diagram representing a natural number n. Associated with each n are finitely many such diagrams, and they all can be found easily. Admissible diagrams representing anumbern are used to uniquely parametrize conjugacy classes of maximal X-subgroups of odd index in the symmetric group Symn, and we define the structure of such groups. As a consequence, we obtain a complete classification of submaximal X-subgroups of odd index in alternating groups.
Cite:
Vasil’ev A.S.
, Revin D.O.
Relatively Maximal Subgroups of Odd Index in Symmetric Groups
Algebra and Logic. 2022. V.61. N2. P.104-124. DOI: 10.1007/s10469-022-09680-0 WOS Scopus РИНЦ OpenAlex
Relatively Maximal Subgroups of Odd Index in Symmetric Groups
Algebra and Logic. 2022. V.61. N2. P.104-124. DOI: 10.1007/s10469-022-09680-0 WOS Scopus РИНЦ OpenAlex
Original:
Васильев А.С.
, Ревин Д.О.
Относительно максимальные подгруппы нечетного индекса в симметрических группах
Алгебра и логика. 2022. Т.61. №2. С.150-179. DOI: 10.33048/alglog.2022.61.202 РИНЦ
Относительно максимальные подгруппы нечетного индекса в симметрических группах
Алгебра и логика. 2022. Т.61. №2. С.150-179. DOI: 10.33048/alglog.2022.61.202 РИНЦ
Dates:
Submitted: | Feb 17, 2022 |
Accepted: | Sep 1, 2022 |
Published print: | Oct 15, 2022 |
Published online: | Oct 15, 2022 |
Identifiers:
Web of science: | WOS:000869236500001 |
Scopus: | 2-s2.0-85139818635 |
Elibrary: | 51664533 |
OpenAlex: | W4306318227 |
Citing:
Пока нет цитирований