Geometry of knots and links Научная публикация
Журнал |
IRMA Lectures in Mathematics and Theoretical Physics
ISSN: 2523-5133 , E-ISSN: 2523-5141 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 33, Страницы: 433-454 Страниц : 22 DOI: 10.4171/irma/33-1/20 | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 18-01-00420 |
Реферат:
We give an overview of recent results on the geometry of knots and links. More precisely, we investigate the existence of hyperbolic, spherical or Euclidean structure on various cone manifolds whose underlying space is the three-dimensional sphere and singular set is a given knot or link. We present trigonometrical identities involving the lengths of singular geodesics and cone angles of such cone manifolds. Then these identities are used to produce exact integral formulae for volumes of the corresponding cone manifolds.
Библиографическая ссылка:
Abrosimov N.
, Mednykh A.
Geometry of knots and links
IRMA Lectures in Mathematics and Theoretical Physics. 2021. V.33. P.433-454. DOI: 10.4171/irma/33-1/20 OpenAlex
Geometry of knots and links
IRMA Lectures in Mathematics and Theoretical Physics. 2021. V.33. P.433-454. DOI: 10.4171/irma/33-1/20 OpenAlex
Даты:
Опубликована online: | 15 июл. 2021 г. |
Идентификаторы БД:
OpenAlex: | W3173358635 |
Цитирование в БД:
БД | Цитирований |
---|---|
OpenAlex | 1 |