Sciact
  • EN
  • RU

Geometry of knots and links Научная публикация

Журнал IRMA Lectures in Mathematics and Theoretical Physics
ISSN: 2523-5133 , E-ISSN: 2523-5141
Вых. Данные Год: 2021, Том: 33, Страницы: 433-454 Страниц : 22 DOI: 10.4171/irma/33-1/20
Авторы Abrosimov Nikolay 1,2 , Mednykh Alexander 1,2
Организации
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Информация о финансировании (1)

1 Российский научный фонд 18-01-00420

Реферат: We give an overview of recent results on the geometry of knots and links. More precisely, we investigate the existence of hyperbolic, spherical or Euclidean structure on various cone manifolds whose underlying space is the three-dimensional sphere and singular set is a given knot or link. We present trigonometrical identities involving the lengths of singular geodesics and cone angles of such cone manifolds. Then these identities are used to produce exact integral formulae for volumes of the corresponding cone manifolds.
Библиографическая ссылка: Abrosimov N. , Mednykh A.
Geometry of knots and links
IRMA Lectures in Mathematics and Theoretical Physics. 2021. V.33. P.433-454. DOI: 10.4171/irma/33-1/20 OpenAlex
Даты:
Опубликована online: 15 июл. 2021 г.
Идентификаторы БД:
OpenAlex: W3173358635
Цитирование в БД:
БД Цитирований
OpenAlex 1
Альметрики: