Euclidean volumes of hyperbolic knots Full article
Journal |
Proceedings of the American Mathematical Society
ISSN: 0002-9939 , E-ISSN: 1088-6826 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2024, Volume: 152, Pages: 869-881 Pages count : 13 DOI: 10.1090/proc/16353 | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0005 |
2 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
The hyperbolic structure on a 3-dimensional cone-manifold with a knot as singularity can often be deformed into a limiting Euclidean structure. In the present paper we show that the respective normalised Euclidean volume is always an algebraic number, which is reminiscent of Sabitov's theorem (the Bellows Conjecture). This fact also stands in contrast to hyperbolic volumes whose number-theoretic nature is usually quite complicated.
Cite:
Abrosimov N.
, Kolpakov A.
, Mednykh A.
Euclidean volumes of hyperbolic knots
Proceedings of the American Mathematical Society. 2024. V.152. P.869-881. DOI: 10.1090/proc/16353 WOS Scopus РИНЦ OpenAlex
Euclidean volumes of hyperbolic knots
Proceedings of the American Mathematical Society. 2024. V.152. P.869-881. DOI: 10.1090/proc/16353 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Sep 4, 2021 |
Accepted: | Nov 18, 2022 |
Published online: | Dec 7, 2023 |
Published print: | Mar 6, 2024 |
Identifiers:
Web of science: | WOS:001120917300001 |
Scopus: | 2-s2.0-85181951358 |
Elibrary: | 60266777 |
OpenAlex: | W3182077570 |
Citing:
Пока нет цитирований