Sciact
  • EN
  • RU

On Poletskiy-type modulus inequalities for some classes of mappings Научная публикация

Журнал Владикавказский математический журнал (Vladikavkaz Mathematical Journal)
ISSN: 1814-0807
Вых. Данные Год: 2022, Том: 24, Номер: 4, Страницы: 57-68 Страниц : 12 DOI: 10.46698/w5793-5981-8894-o
Ключевые слова Quasiconformal analysis; Sobolev space; modulus of a family of curves; modulus estimate
Авторы Vodopyanov S.K. 1
Организации
1 Sobolev Institute of Mathematics, 4 Acad. Koptyug Av., Novosibirsk 630090, Russia

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0006

Реферат: It is well-known that the theory of mappings with bounded distortion was laid by Yu.\,G. Reshetnyak in 60-th of the last century [1]. In papers [2,3], there was introduced the two-index scale of mappings with weighted bounded $(q, p)$-distortion. This scale of mappings includes, in particular, mappings with bounded distortion mentioned above (under $q=p=n$ and the trivial weight function). In paper [4], for the two-index scale of mappings with weighted bounded $(q, p)$-distortion, the Poletskiy-type modulus inequality was proved under minimal regularity. In paper [4] many examples of mappings were given to which the results of [4] can be applied. In this paper we extend a result of [1] and show how to apply results of [4] to one such class. Another goal of this paper is to exzibit a new class of mappings in which Poletskiy-type modulus inequalities is valid. As a consequence of the results of this article, we obtain estimates of the change in capacity of condensers.
Библиографическая ссылка: Vodopyanov S.K.
On Poletskiy-type modulus inequalities for some classes of mappings
Владикавказский математический журнал (Vladikavkaz Mathematical Journal). 2022. V.24. N4. P.57-68. DOI: 10.46698/w5793-5981-8894-o Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 2 сент. 2022 г.
Опубликована в печати: 28 дек. 2022 г.
Опубликована online: 28 дек. 2022 г.
Идентификаторы БД:
Scopus: 2-s2.0-85145472718
РИНЦ: 49994058
OpenAlex: W4311391453
Цитирование в БД:
БД Цитирований
Scopus 1
OpenAlex 3
РИНЦ 2
Альметрики: