Sciact
  • EN
  • RU

Logarithmic asymptotics of the number of central vertices of almost all n-vertex graphs of diameter k Научная публикация

Журнал Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Вых. Данные Год: 2022, Том: 19, Номер: 2, Страницы: 747-761 Страниц : 15 DOI: 10.33048/semi.2022.19.062
Ключевые слова graph, diameter, radius, central vertices, number of central vertices, central ratio, center, spectrum of center, typical graphs, almost all graphs.
Авторы Fedoryaeva T.I. 1
Организации
1 Sobolev Institute of Mathematics, pr. Koptyuga,4, Novosibirsk, 630090, Russian Federation

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0018

Реферат: The asymptotic behavior of the number of central vertices and F.~Buckley's central ratio ${\mathbb R}_{c}(G)=|{\mathbb C}(G)|/|V(G)|$ for almost all $n$-vertex graphs $G$ of fixed diameter $k$ is investigated. The logarithmic asymptotics of the number of central vertices for almost all such $n$-vertex graphs is established: $0$ or $\log_2 n$ ($1$ or $\log_2 n$), respectively, for arising here subclasses of graphs of the even (odd) diameter. It is proved that for almost all $n$-vertex graphs of diameter $k$, ${\mathbb R}_{c}(G)=1$ for $k=1,2$, and ${\mathbb R}_{c }(G)=1-2/n$ for graphs of diameter $k=3$, while for $k\geq 4$ the value of the central ratio ${\mathbb R}_{c}(G)$ is bounded by the interval $(\frac{\Delta}{6} + r_1(n), 1-\frac{\Delta}{6} - r_2(n))$ except no more than one value (two values) outside the interval for even diameter $k$ (for odd diameter $k$) depending on $k$. Here $\Delta\in (0,1)$ is arbitrary predetermined constant and $r_1(n),r_2(n)$ are positive infinitesimal functions.
Библиографическая ссылка: Fedoryaeva T.I.
Logarithmic asymptotics of the number of central vertices of almost all n-vertex graphs of diameter k
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N2. P.747-761. DOI: 10.33048/semi.2022.19.062 WOS Scopus РИНЦ
Даты:
Поступила в редакцию: 11 мая 2022 г.
Принята к публикации: 17 окт. 2022 г.
Опубликована online: 11 нояб. 2022 г.
Идентификаторы БД:
Web of science: WOS:000886649600028
Scopus: 2-s2.0-85145833315
РИНЦ: 50336848
Цитирование в БД:
БД Цитирований
Web of science 2
Scopus 2
РИНЦ 1
Альметрики: