Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers Full article
Journal |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||
---|---|---|---|
Output data | Year: 2022, Volume: 267, Number: 4, Pages: 511-518 Pages count : 8 DOI: 10.1007/s10958-022-06156-5 | ||
Authors |
|
||
Affiliations |
|
Funding (2)
1 | Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». | FWNF-2022-0016 |
2 | Russian Foundation for Basic Research | 20-01-00650 |
Abstract:
We study interpolation of a function of two variables with large gradients in regions of a boundary layer under the assumption that the Shishkin decomposition into the sum of regular and boundary layer components is valid for the interpolated function. We generalize the one-dimensional cubic splines, studied earlier on the Shishkin and Bakhvalov grids, to the two-dimensional case. We obtain error estimates for a two-dimensional spline interpolation, uniform in a small parameter.
Cite:
Zadorin A.I.
Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers
Journal of Mathematical Sciences (United States). 2022. V.267. N4. P.511-518. DOI: 10.1007/s10958-022-06156-5 Scopus РИНЦ OpenAlex
Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers
Journal of Mathematical Sciences (United States). 2022. V.267. N4. P.511-518. DOI: 10.1007/s10958-022-06156-5 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: | 2-s2.0-85141109010 |
Elibrary: | 51696723 |
OpenAlex: | W4308072661 |