Sciact
  • EN
  • RU

Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2022, Volume: 267, Number: 4, Pages: 511-518 Pages count : 8 DOI: 10.1007/s10958-022-06156-5
Authors Zadorin A.I. 1
Affiliations
1 Sobolev Institute of Mathematics SB RAS 4, Akad. Koptyuga pr., Novosibirsk 630090, Russia

Funding (2)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0016
2 Russian Foundation for Basic Research 20-01-00650

Abstract: We study interpolation of a function of two variables with large gradients in regions of a boundary layer under the assumption that the Shishkin decomposition into the sum of regular and boundary layer components is valid for the interpolated function. We generalize the one-dimensional cubic splines, studied earlier on the Shishkin and Bakhvalov grids, to the two-dimensional case. We obtain error estimates for a two-dimensional spline interpolation, uniform in a small parameter.
Cite: Zadorin A.I.
Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers
Journal of Mathematical Sciences (United States). 2022. V.267. N4. P.511-518. DOI: 10.1007/s10958-022-06156-5 Scopus РИНЦ OpenAlex
Identifiers:
Scopus: 2-s2.0-85141109010
Elibrary: 51696723
OpenAlex: W4308072661
Citing:
DB Citing
Scopus 1
OpenAlex 1
Elibrary 1
Altmetrics: