Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers Научная публикация
Журнал |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||
---|---|---|---|
Вых. Данные | Год: 2022, Том: 267, Номер: 4, Страницы: 511-518 Страниц : 8 DOI: 10.1007/s10958-022-06156-5 | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (2)
1 | Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». | FWNF-2022-0016 |
2 | Российский фонд фундаментальных исследований | 20-01-00650 |
Реферат:
We study interpolation of a function of two variables with large gradients in regions of a boundary layer under the assumption that the Shishkin decomposition into the sum of regular and boundary layer components is valid for the interpolated function. We generalize the one-dimensional cubic splines, studied earlier on the Shishkin and Bakhvalov grids, to the two-dimensional case. We obtain error estimates for a two-dimensional spline interpolation, uniform in a small parameter.
Библиографическая ссылка:
Zadorin A.I.
Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers
Journal of Mathematical Sciences (United States). 2022. V.267. N4. P.511-518. DOI: 10.1007/s10958-022-06156-5 Scopus РИНЦ OpenAlex
Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers
Journal of Mathematical Sciences (United States). 2022. V.267. N4. P.511-518. DOI: 10.1007/s10958-022-06156-5 Scopus РИНЦ OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-85141109010 |
РИНЦ: | 51696723 |
OpenAlex: | W4308072661 |