Sciact
  • EN
  • RU

Finite skew braces with solvable additive group Full article

Journal Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Output data Year: 2021, Volume: 574, Pages: 172-183 Pages count : 12 DOI: 10.1016/j.jalgebra.2021.01.027
Tags Simple group; Skew brace; Solvable group
Authors Gorshkov Ilya 1 , Nasybullov Timur 1,2
Affiliations
1 Sobolev Institute of Mathematics, Acad. Koptyug avenue 4, 630090 Novosibirsk, Russia
2 Novosibirsk State University

Abstract: A.Smoktunowicz and L.Vendramin conjectured that if Ais a finite skew brace with solvable additive group, then the multiplicative group of A is solvable. In this short note we make a step towards positive solution of this conjecture proving that if A is a minimal finite skew brace with solvable additive group and non-solvable multiplicative group, then the multiplicative group of A is not simple. On the way to obtaining this result, we prove that the conjecture of A.Smoktunowicz and L.Vendramin is correct in the case when the order of A is not divisible by 3.
Cite: Gorshkov I. , Nasybullov T.
Finite skew braces with solvable additive group
Journal of Algebra. 2021. V.574. P.172-183. DOI: 10.1016/j.jalgebra.2021.01.027 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000623913200008
Scopus: 2-s2.0-85100437429
OpenAlex: W3127390092
Citing:
DB Citing
Scopus 6
OpenAlex 9
Web of science 6
Altmetrics: