Sciact
  • EN
  • RU

Finite skew braces with solvable additive group Научная публикация

Журнал Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Вых. Данные Год: 2021, Том: 574, Страницы: 172-183 Страниц : 12 DOI: 10.1016/j.jalgebra.2021.01.027
Ключевые слова Simple group; Skew brace; Solvable group
Авторы Gorshkov Ilya 1 , Nasybullov Timur 1,2
Организации
1 Sobolev Institute of Mathematics, Acad. Koptyug avenue 4, 630090 Novosibirsk, Russia
2 Novosibirsk State University

Реферат: A.Smoktunowicz and L.Vendramin conjectured that if Ais a finite skew brace with solvable additive group, then the multiplicative group of A is solvable. In this short note we make a step towards positive solution of this conjecture proving that if A is a minimal finite skew brace with solvable additive group and non-solvable multiplicative group, then the multiplicative group of A is not simple. On the way to obtaining this result, we prove that the conjecture of A.Smoktunowicz and L.Vendramin is correct in the case when the order of A is not divisible by 3.
Библиографическая ссылка: Gorshkov I. , Nasybullov T.
Finite skew braces with solvable additive group
Journal of Algebra. 2021. V.574. P.172-183. DOI: 10.1016/j.jalgebra.2021.01.027 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000623913200008
Scopus: 2-s2.0-85100437429
OpenAlex: W3127390092
Цитирование в БД:
БД Цитирований
Scopus 6
OpenAlex 9
Web of science 6
Альметрики: