Finite skew braces with solvable additive group Научная публикация
Журнал |
Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 574, Страницы: 172-183 Страниц : 12 DOI: 10.1016/j.jalgebra.2021.01.027 | ||||
Ключевые слова | Simple group; Skew brace; Solvable group | ||||
Авторы |
|
||||
Организации |
|
Реферат:
A.Smoktunowicz and L.Vendramin conjectured that if Ais a finite skew brace with solvable additive group, then the multiplicative group of A is solvable. In this short note we make a step towards positive solution of this conjecture proving that if A is a minimal finite skew brace with solvable additive group and non-solvable multiplicative group, then the multiplicative group of A is not simple. On the way to obtaining this result, we prove that the conjecture of A.Smoktunowicz and L.Vendramin is correct in the case when the order of A is not divisible by 3.
Библиографическая ссылка:
Gorshkov I.
, Nasybullov T.
Finite skew braces with solvable additive group
Journal of Algebra. 2021. V.574. P.172-183. DOI: 10.1016/j.jalgebra.2021.01.027 WOS Scopus OpenAlex
Finite skew braces with solvable additive group
Journal of Algebra. 2021. V.574. P.172-183. DOI: 10.1016/j.jalgebra.2021.01.027 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000623913200008 |
Scopus: | 2-s2.0-85100437429 |
OpenAlex: | W3127390092 |