Eparability of Schur Rings Over an Abelian Group of Order 4p Научная публикация
Журнал |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||
---|---|---|---|
Вых. Данные | Год: 2019, Том: 243, Номер: 4, Страницы: 624-632 Страниц : 9 DOI: 10.1007/s10958-019-04563-9 | ||
Авторы |
|
||
Организации |
|
Реферат:
An S-ring (a Schur ring) is said to be separable with respect to a class of groups K if every its algebraic isomorphism to an S-ring over a group from K is induced by a combinatorial isomorphism. It is proved that every Schur ring over an Abelian group G of order 4p, where p is a prime, is separable with respect to the class of Abelian groups. This implies that the Weisfeiler-Lehman dimension of the class of Cayley graphs over G is at most 3.
Библиографическая ссылка:
Ryabov G.
Eparability of Schur Rings Over an Abelian Group of Order 4p
Journal of Mathematical Sciences (United States). 2019. Т.243. №4. С.624-632. DOI: 10.1007/s10958-019-04563-9 Scopus OpenAlex
Eparability of Schur Rings Over an Abelian Group of Order 4p
Journal of Mathematical Sciences (United States). 2019. Т.243. №4. С.624-632. DOI: 10.1007/s10958-019-04563-9 Scopus OpenAlex
Даты:
Поступила в редакцию: | 1 мая 2018 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-85074511848 |
OpenAlex: | W2800667452 |