The Cayley isomorphism property for the group C5 2 × Cp Full article
Journal |
Ars Mathematica Contemporanea
ISSN: 1855-3966 , E-ISSN: 1855-3974 |
||||
---|---|---|---|---|---|
Output data | Year: 2020, Volume: 19, Number: 2, Pages: 277-295 Pages count : 19 DOI: 10.26493/1855-3974.2348.F42 | ||||
Tags | DCI-groups; Isomorphisms; Schur rings | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
A finite group G is called a DCI-group if two Cayley digraphs over G are isomorphic if and only if their connection sets are conjugate by a group automorphism. We prove that the group C^5_2 x Cp, where p is a prime, is a DCI-group if and only if p 6= 2. Together with the previously obtained results, this implies that a group G of order 32p, where p is a prime, is a DCI-group if and only if p\neq 2 and G=C^5_2 x Cp.
Cite:
Ryabov G.
The Cayley isomorphism property for the group C5 2 × Cp
Ars Mathematica Contemporanea. 2020. V.19. N2. P.277-295. DOI: 10.26493/1855-3974.2348.F42 WOS Scopus OpenAlex
The Cayley isomorphism property for the group C5 2 × Cp
Ars Mathematica Contemporanea. 2020. V.19. N2. P.277-295. DOI: 10.26493/1855-3974.2348.F42 WOS Scopus OpenAlex
Dates:
Submitted: | May 28, 2020 |
Accepted: | Jul 29, 2020 |
Published print: | Nov 17, 2020 |
Identifiers:
Web of science: | WOS:000595409100007 |
Scopus: | 2-s2.0-85098535094 |
OpenAlex: | W3122657524 |
Citing:
Пока нет цитирований