Sciact
  • EN
  • RU

The Cayley isomorphism property for the group C5 2 × Cp Full article

Journal Ars Mathematica Contemporanea
ISSN: 1855-3966 , E-ISSN: 1855-3974
Output data Year: 2020, Volume: 19, Number: 2, Pages: 277-295 Pages count : 19 DOI: 10.26493/1855-3974.2348.F42
Tags DCI-groups; Isomorphisms; Schur rings
Authors Ryabov Grigory 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Abstract: A finite group G is called a DCI-group if two Cayley digraphs over G are isomorphic if and only if their connection sets are conjugate by a group automorphism. We prove that the group C^5_2 x Cp, where p is a prime, is a DCI-group if and only if p 6= 2. Together with the previously obtained results, this implies that a group G of order 32p, where p is a prime, is a DCI-group if and only if p\neq 2 and G=C^5_2 x Cp.
Cite: Ryabov G.
The Cayley isomorphism property for the group C5 2 × Cp
Ars Mathematica Contemporanea. 2020. V.19. N2. P.277-295. DOI: 10.26493/1855-3974.2348.F42 WOS Scopus OpenAlex
Dates:
Submitted: May 28, 2020
Accepted: Jul 29, 2020
Published print: Nov 17, 2020
Identifiers:
Web of science: WOS:000595409100007
Scopus: 2-s2.0-85098535094
OpenAlex: W3122657524
Citing: Пока нет цитирований
Altmetrics: