Sciact
  • EN
  • RU

Factorization of special harmonic polynomials of three variables Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2020, Volume: 17, Pages: 1299-1312 Pages count : 14 DOI: 10.33048/semi.2020.17.096
Tags Legendre functions, harmonic polynomials, factorization
Authors Gichev Viktor Matveevich 1
Affiliations
1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН».

Funding (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». 0314-2019-0004

Abstract: We consider homogeneous harmonic polynomials of real variables x,y,z that are eigenfunctions of the rotations about the axis z. They have the form (x±yi)^n p(x,y,z), where p is a rotation invariant polynomial. Let R_m be the family of the homogeneous rotation invariant polynomials p of degree m such that p is reducible over the rationals and (x+yi)^n p is harmonic for some n∈N. We describe R_m for m≤5 and prove that R_6 and R_7 are finite.
Cite: Gichev V.M.
Factorization of special harmonic polynomials of three variables
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2020. V.17. P.1299-1312. DOI: 10.33048/semi.2020.17.096 WOS Scopus OpenAlex
Dates:
Submitted: Nov 2, 2019
Accepted: Sep 8, 2020
Published print: Sep 8, 2020
Published online: Sep 8, 2020
Identifiers:
Web of science: WOS:000567363400001
Scopus: 2-s2.0-85099346106
OpenAlex: W3117561836
Citing:
DB Citing
Scopus 1
OpenAlex 2
Altmetrics: