Linear instability of the polymeric fluid flow with constant flow rate in an infinite plane channel with perforated walls Тезисы доклада
Конференция |
XVIII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications 20-24 июн. 2022 , Малага |
||||
---|---|---|---|---|---|
Сборник | XVIII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications, Book of abstracts Сборник, 2022. 405 c. |
||||
Вых. Данные | Год: 2022, Страницы: 99 Страниц : 1 | ||||
Авторы |
|
||||
Организации |
|
Реферат:
In this study, we consider a rheological Pokrovski-Vinogradov model of the flows of solutions and melts of an incompressible viscoelastic polymeric medium for a flow in an infinite plane channel with perforated walls. We prove the linear Lyapunov instability of the base solution with a constant flow rate in a perturbation class, which is periodic with respect to the variable, changing along the channel wall.
Библиографическая ссылка:
Tkachev D.L.
Linear instability of the polymeric fluid flow with constant flow rate in an infinite plane channel with perforated walls
В сборнике XVIII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications, Book of abstracts. 2022. – C.99.
Linear instability of the polymeric fluid flow with constant flow rate in an infinite plane channel with perforated walls
В сборнике XVIII International Conference on Hyperbolic Problems: Theory, Numerics, and Applications, Book of abstracts. 2022. – C.99.
Идентификаторы БД:
Нет идентификаторов
Цитирование в БД:
Пока нет цитирований