Sciact
  • EN
  • RU

Inverse problems of parameter recovery in differential equations with multiple characteristics Научная публикация

Журнал Journal of Mathematics, Mechanics and Computer Science
ISSN: 1563-0277 , E-ISSN: 2617-4871
Вых. Данные Год: 2022, Том: 113, Номер: 1, Страницы: 3-16 Страниц : 14 DOI: 10.26577/JMMCS.2022.v113.i1.01
Ключевые слова Inverse problems, third-order equations, multiple characteristics, numerical parameter, solvability
Авторы Kozhanov A.I. 1,2 , Abylkayrov U.U. 3,4 , Ashurova G.R. 3
Организации
1 Sobolev Institute of Mathematics, Russia, Novosibirsk
2 Novosibirsk State University, Russia, Novosibirsk
3 Al-Farabi Kazakh National University, Kazakhstan, Almaty
4 Institute of Mathematics and Mathematical Modeling, Kazakhstan, Almaty

Реферат: Inverse problems - the problem of finding the causes of known or given consequences. They arise when the characteristics of an object of interest to us are not available for direct observation. These are, for example, the restoration of the characteristics of the field sources according to their given values at some points, the restoration or interpretation of the original signal from the known output signal, etc. This paper studies the solvability of finding the solution of a differential equation of inverse problems. The work is devoted to the study of the solvability in Sobolev spaces of nonlinear inverse coefficient problems for differential equations of the third order with multiple characteristics. In this paper, alongside with finding the solution of one or another differential equation, it is also required to find one or more coefficients of the equation itself for us to name them inverse coefficient problems. A distinctive feature of the problems studied in this paper is that the unknown coefficient is a numerical parameter, and not a function of certain independent variables.
Библиографическая ссылка: Kozhanov A.I. , Abylkayrov U.U. , Ashurova G.R.
Inverse problems of parameter recovery in differential equations with multiple characteristics
Journal of Mathematics, Mechanics and Computer Science. 2022. V.113. N1. P.3-16. DOI: 10.26577/JMMCS.2022.v113.i1.01 WOS Scopus РИНЦ OpenAlex
Даты:
Опубликована в печати: 21 нояб. 2022 г.
Опубликована online: 21 нояб. 2022 г.
Идентификаторы БД:
Web of science: WOS:000848848600001
Scopus: 2-s2.0-85180199340
РИНЦ: 58251749
OpenAlex: W4223432445
Цитирование в БД:
БД Цитирований
Scopus 1
Альметрики: