Rota-Baxter operators on groups Full article
Journal |
Proceedings of the Indian Academy of Sciences: Mathematical Sciences
ISSN: 0253-4142 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2023, Volume: 133, Number: 1, Article number : 4, Pages count : 29 DOI: 10.1007/s12044-023-00723-9 | ||||||||
Tags | Rota–Baxter operator; Rota–Baxter group; simple group; sporadic group; factorization | ||||||||
Authors |
|
||||||||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0002 |
2 | Министерство науки и высшего образования РФ | 075-02-2022-884 |
Abstract:
Theory of Rota-Baxter operators on rings and algebras has been developed since 1960. Recently, L. Guo, H. Lang, Y. Sheng [arXiv:2009.03492] have defined the notion of Rota-Baxter operator on a group. We provide some general constructions of Rota-Baxter operators on a group. Given a map on a group, we study its extensions to a Rota-Baxter operator. We state the connection between Rota-Baxter operators on a group and Rota-Baxter operators on an associated Lie ring. We describe Rota-Baxter operators on sporadic simple groups.
Cite:
Bardakov V.G.
, Gubarev V.
Rota-Baxter operators on groups
Proceedings of the Indian Academy of Sciences: Mathematical Sciences. 2023. V.133. N1. 4 :1-29. DOI: 10.1007/s12044-023-00723-9 WOS Scopus РИНЦ OpenAlex
Rota-Baxter operators on groups
Proceedings of the Indian Academy of Sciences: Mathematical Sciences. 2023. V.133. N1. 4 :1-29. DOI: 10.1007/s12044-023-00723-9 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Jul 12, 2022 |
Accepted: | Nov 20, 2022 |
Published print: | Jun 22, 2023 |
Published online: | Jun 22, 2023 |
Identifiers:
Web of science: | WOS:000940882000001 |
Scopus: | 2-s2.0-85149265321 |
Elibrary: | 61466788 |
OpenAlex: | W3135062358 |