Application of Cubic Splines on Bakhvalov Meshes in the Case of a Boundary Layer Научная публикация
Журнал |
Computational Mathematics and Mathematical Physics
ISSN: 0965-5425 , E-ISSN: 1555-6662 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 61, Номер: 12, Страницы: 1911-1930 Страниц : 20 DOI: 10.1134/S096554252112006X | ||||||
Ключевые слова | Bakhvalov mesh; boundary layer; cubic spline; error estimate; modification; singular perturbation | ||||||
Авторы |
|
||||||
Организации |
|
Информация о финансировании (2)
1 | Российский фонд фундаментальных исследований | 20-01-00650 |
2 | Институт математики им. С.Л. Соболева СО РАН | 0314-2019-0009 |
Реферат:
Abstract: The problem of cubic spline interpolation on Bakhvalov meshes for functions with high gradients is considered. Error estimates are obtained in the class of functions with high gradients in an exponential boundary layer. According to these estimates, the error of a spline can increase indefinitely as a small parameter tends to zero for a fixed number of grid nodes. A modified cubic interpolation spline is proposed, the error of which has an O(N- 4) estimate uniformly with respect to the small parameter, where $$N$$ is the number of grid nodes. © 2021, Pleiades Publishing, Ltd.
Библиографическая ссылка:
Blatov I.A.
, Zadorin A.I.
, Kitaeva E.V.
Application of Cubic Splines on Bakhvalov Meshes in the Case of a Boundary Layer
Computational Mathematics and Mathematical Physics. 2021. V.61. N12. P.1911-1930. DOI: 10.1134/S096554252112006X WOS Scopus OpenAlex
Application of Cubic Splines on Bakhvalov Meshes in the Case of a Boundary Layer
Computational Mathematics and Mathematical Physics. 2021. V.61. N12. P.1911-1930. DOI: 10.1134/S096554252112006X WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000742039500001 |
Scopus: | 2-s2.0-85122955903 |
OpenAlex: | W4206036687 |