EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES Full article
Journal |
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika)
ISSN: 2071-0410 , E-ISSN: 2311-2263 |
||||
---|---|---|---|---|---|
Output data | Year: 2021, Number: 53, Pages: 5-11 Pages count : 7 DOI: 10.17223/20710410/53/1 | ||||
Tags | Direct powers; Equationally Noetherian al- gebraic structures; Groups; Relations; Semigroups | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 19-11-00209 |
Abstract:
For a semigroup S (group G) we study relational equations and describe all semi- groups S with equationally Noetherian direct powers. It follows that any group G has equationally Noetherian direct powers if we consider G as an algebraic structure of a certain relational language. Further we specify the results as follows: If a direct power of a finite semigroup S is equationally Noetherian, then the minimal ideal Ker(S) of S is a rectangular band of groups and Ker(S) coincides with the set of all reducible elements. © 2021 Tomsk State University. All rights reserved.
Cite:
Shevlyakov A.
EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2021. N53. P.5-11. DOI: 10.17223/20710410/53/1 WOS Scopus OpenAlex
EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2021. N53. P.5-11. DOI: 10.17223/20710410/53/1 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000716473900001 |
Scopus: | 2-s2.0-85122403561 |
OpenAlex: | W3047218377 |