Sciact
  • EN
  • RU

EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES Full article

Journal Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika)
ISSN: 2071-0410 , E-ISSN: 2311-2263
Output data Year: 2021, Number: 53, Pages: 5-11 Pages count : 7 DOI: 10.17223/20710410/53/1
Tags Direct powers; Equationally Noetherian al- gebraic structures; Groups; Relations; Semigroups
Authors Shevlyakov A. 1,2
Affiliations
1 Sobolev Institute of Mathematics SB RAS, Omsk, Russian Federation
2 Federation Omsk State Technical University, Omsk, Russian Federation

Funding (1)

1 Russian Science Foundation 19-11-00209

Abstract: For a semigroup S (group G) we study relational equations and describe all semi- groups S with equationally Noetherian direct powers. It follows that any group G has equationally Noetherian direct powers if we consider G as an algebraic structure of a certain relational language. Further we specify the results as follows: If a direct power of a finite semigroup S is equationally Noetherian, then the minimal ideal Ker(S) of S is a rectangular band of groups and Ker(S) coincides with the set of all reducible elements. © 2021 Tomsk State University. All rights reserved.
Cite: Shevlyakov A.
EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2021. N53. P.5-11. DOI: 10.17223/20710410/53/1 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000716473900001
Scopus: 2-s2.0-85122403561
OpenAlex: W3047218377
Citing:
DB Citing
Scopus 1
Web of science 1
Altmetrics: