Sciact
  • EN
  • RU

EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES Научная публикация

Журнал Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika)
ISSN: 2071-0410 , E-ISSN: 2311-2263
Вых. Данные Год: 2021, Номер: 53, Страницы: 5-11 Страниц : 7 DOI: 10.17223/20710410/53/1
Ключевые слова Direct powers; Equationally Noetherian al- gebraic structures; Groups; Relations; Semigroups
Авторы Shevlyakov A. 1,2
Организации
1 Sobolev Institute of Mathematics SB RAS, Omsk, Russian Federation
2 Federation Omsk State Technical University, Omsk, Russian Federation

Информация о финансировании (1)

1 Российский научный фонд 19-11-00209

Реферат: For a semigroup S (group G) we study relational equations and describe all semi- groups S with equationally Noetherian direct powers. It follows that any group G has equationally Noetherian direct powers if we consider G as an algebraic structure of a certain relational language. Further we specify the results as follows: If a direct power of a finite semigroup S is equationally Noetherian, then the minimal ideal Ker(S) of S is a rectangular band of groups and Ker(S) coincides with the set of all reducible elements. © 2021 Tomsk State University. All rights reserved.
Библиографическая ссылка: Shevlyakov A.
EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2021. N53. P.5-11. DOI: 10.17223/20710410/53/1 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000716473900001
Scopus: 2-s2.0-85122403561
OpenAlex: W3047218377
Цитирование в БД:
БД Цитирований
Scopus 1
Web of science 1
Альметрики: