EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES Научная публикация
Журнал |
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika)
ISSN: 2071-0410 , E-ISSN: 2311-2263 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2021, Номер: 53, Страницы: 5-11 Страниц : 7 DOI: 10.17223/20710410/53/1 | ||||
Ключевые слова | Direct powers; Equationally Noetherian al- gebraic structures; Groups; Relations; Semigroups | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 19-11-00209 |
Реферат:
For a semigroup S (group G) we study relational equations and describe all semi- groups S with equationally Noetherian direct powers. It follows that any group G has equationally Noetherian direct powers if we consider G as an algebraic structure of a certain relational language. Further we specify the results as follows: If a direct power of a finite semigroup S is equationally Noetherian, then the minimal ideal Ker(S) of S is a rectangular band of groups and Ker(S) coincides with the set of all reducible elements. © 2021 Tomsk State University. All rights reserved.
Библиографическая ссылка:
Shevlyakov A.
EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2021. N53. P.5-11. DOI: 10.17223/20710410/53/1 WOS Scopus OpenAlex
EQUATIONS OVER DIRECT POWERS OF ALGEBRAIC STRUCTURES IN RELATIONAL LANGUAGES
Прикладная дискретная математика (Prikladnaya Diskretnaya Matematika). 2021. N53. P.5-11. DOI: 10.17223/20710410/53/1 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000716473900001 |
Scopus: | 2-s2.0-85122403561 |
OpenAlex: | W3047218377 |