On the minimum supports of some eigenfunctions in the Doob graphs Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Output data | Year: 2018, Volume: 15, Pages: 258-266 Pages count : 9 DOI: 10.17377/semi.2018.15.024 | ||
Tags | Doob graph; Eigenfunction; Minimum support | ||
Authors |
|
||
Affiliations |
|
Abstract:
We prove that the minimum size of the support of an eigenfunction in the Doob graph D(m,n) corresponding to the second largest eigenvalue is 6⋅4^{2m+n−2}, and obtain characterisation of all eigenfunctions with minimum support. Similar results, with the minimum support size 22m+n, are obtained for the minimum eigenvalue of D(m,n).
Cite:
Bespalov E.A.
On the minimum supports of some eigenfunctions in the Doob graphs
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2018. V.15. P.258-266. DOI: 10.17377/semi.2018.15.024 WOS Scopus
On the minimum supports of some eigenfunctions in the Doob graphs
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2018. V.15. P.258-266. DOI: 10.17377/semi.2018.15.024 WOS Scopus
Dates:
Submitted: | Dec 28, 2017 |
Published print: | Mar 19, 2018 |
Identifiers:
Web of science: | WOS:000438412200024 |
Scopus: | 2-s2.0-85058231756 |