Sciact
  • EN
  • RU

(2, 3)-Generated Groups with Small Element Orders Научная публикация

Журнал Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Вых. Данные Год: 2021, Том: 60, Номер: 3, Страницы: 217-222 Страниц : 6 DOI: 10.1007/s10469-021-09644-w
Ключевые слова (2, 3)-generated group; involution; locally finite group; OCn-group
Авторы Yang N. 1 , Mamontov A.S. 2,3
Организации
1 School Sci., Jiangnan University, Wuxi, China
2 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
3 Novosibirsk State University, Novosibirsk, Russian Federation

Информация о финансировании (1)

1 Математический центр в Академгородке 075-15-2019-1675

Реферат: A periodic group is called an OCn-group if the set of its element orders consists of all natural numbers from 1 to some natural n. W. Shi posed the question whether every OCn-group is locally finite. Until now, the case n = 8 remains open. Here we prove that if a group is generated by an involution and an element of order 3, and its element orders do not exceed 8, then it is finite. Thereby we obtain an affirmative answer to Shi’s question for n = 8 for (2, 3)-generated groups. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
Библиографическая ссылка: Yang N. , Mamontov A.S.
(2, 3)-Generated Groups with Small Element Orders
Algebra and Logic. 2021. V.60. N3. P.217-222. DOI: 10.1007/s10469-021-09644-w WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000714533400001
Scopus: 2-s2.0-85118526554
OpenAlex: W3212590410
Цитирование в БД: Пока нет цитирований
Альметрики: