DEGENERATION IN DIFFERENTIAL EQUATIONS WITH MULTIPLE CHARACTERISTICS Full article
Journal |
Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2021, Volume: 28, Number: 3, Pages: 19-30 Pages count : 12 DOI: 10.25587/SVFU.2021.91.97.002 | ||||||
Tags | Boundary value problem; Degeneration; Differential equations with multiple characteristics; Existence; Regular solution; Uniqueness | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
We study the solvability of boundary value problems for the differential equations '(t)ut + (−1)m (t)D2m+1x u + c(x, t)u = f(x, t),'(t)utt + (−1)m+1 (t)D2m+1x u + c(x, t)u = f(x, t),where x 2 (0, 1), t 2 (0, T), m is a non-negative integer, Dkx = @k@xk (D1x = Dx), while thefunctions '(t) and (t) are non-negative and vanish at some points of the segment [0, T].We prove the existence and uniqueness theorems for the regular solutions, those havingall generalized Sobolev derivatives required in the equation, in the inner subdomains. © 2021 A. I. Kozhanov, G. A. Lukina.
Cite:
Kozhanov A.I.
, Lukina G.A.
DEGENERATION IN DIFFERENTIAL EQUATIONS WITH MULTIPLE CHARACTERISTICS
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. V.28. N3. P.19-30. DOI: 10.25587/SVFU.2021.91.97.002 Scopus OpenAlex
DEGENERATION IN DIFFERENTIAL EQUATIONS WITH MULTIPLE CHARACTERISTICS
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. V.28. N3. P.19-30. DOI: 10.25587/SVFU.2021.91.97.002 Scopus OpenAlex
Identifiers:
Scopus: | 2-s2.0-85126431134 |
OpenAlex: | W3216721529 |
Citing:
DB | Citing |
---|---|
Scopus | 1 |