Sciact
  • EN
  • RU

DEGENERATION IN DIFFERENTIAL EQUATIONS WITH MULTIPLE CHARACTERISTICS Научная публикация

Журнал Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X
Вых. Данные Год: 2021, Том: 28, Номер: 3, Страницы: 19-30 Страниц : 12 DOI: 10.25587/SVFU.2021.91.97.002
Ключевые слова Boundary value problem; Degeneration; Differential equations with multiple characteristics; Existence; Regular solution; Uniqueness
Авторы Kozhanov A.I. 1,2 , Lukina G.A. 3
Организации
1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation
2 Academy of Science of the Republic of Sakha (Yakutia), 33 Lenin Avenue, Yakutsk, 677007, Russian Federation
3 Ammosov North-Eastern Federal University, Mirny Polytechnic Institute, 5/1 Tikhonov Stree, Mirny, 678175, Russian Federation

Реферат: We study the solvability of boundary value problems for the differential equations '(t)ut + (−1)m (t)D2m+1x u + c(x, t)u = f(x, t),'(t)utt + (−1)m+1 (t)D2m+1x u + c(x, t)u = f(x, t),where x 2 (0, 1), t 2 (0, T), m is a non-negative integer, Dkx = @k@xk (D1x = Dx), while thefunctions '(t) and (t) are non-negative and vanish at some points of the segment [0, T].We prove the existence and uniqueness theorems for the regular solutions, those havingall generalized Sobolev derivatives required in the equation, in the inner subdomains. © 2021 A. I. Kozhanov, G. A. Lukina.
Библиографическая ссылка: Kozhanov A.I. , Lukina G.A.
DEGENERATION IN DIFFERENTIAL EQUATIONS WITH MULTIPLE CHARACTERISTICS
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. V.28. N3. P.19-30. DOI: 10.25587/SVFU.2021.91.97.002 Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85126431134
OpenAlex: W3216721529
Цитирование в БД:
БД Цитирований
Scopus 1
Альметрики: