DEGENERATION IN DIFFERENTIAL EQUATIONS WITH MULTIPLE CHARACTERISTICS Научная публикация
Журнал |
Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 28, Номер: 3, Страницы: 19-30 Страниц : 12 DOI: 10.25587/SVFU.2021.91.97.002 | ||||||
Ключевые слова | Boundary value problem; Degeneration; Differential equations with multiple characteristics; Existence; Regular solution; Uniqueness | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
We study the solvability of boundary value problems for the differential equations '(t)ut + (−1)m (t)D2m+1x u + c(x, t)u = f(x, t),'(t)utt + (−1)m+1 (t)D2m+1x u + c(x, t)u = f(x, t),where x 2 (0, 1), t 2 (0, T), m is a non-negative integer, Dkx = @k@xk (D1x = Dx), while thefunctions '(t) and (t) are non-negative and vanish at some points of the segment [0, T].We prove the existence and uniqueness theorems for the regular solutions, those havingall generalized Sobolev derivatives required in the equation, in the inner subdomains. © 2021 A. I. Kozhanov, G. A. Lukina.
Библиографическая ссылка:
Kozhanov A.I.
, Lukina G.A.
DEGENERATION IN DIFFERENTIAL EQUATIONS WITH MULTIPLE CHARACTERISTICS
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. V.28. N3. P.19-30. DOI: 10.25587/SVFU.2021.91.97.002 Scopus OpenAlex
DEGENERATION IN DIFFERENTIAL EQUATIONS WITH MULTIPLE CHARACTERISTICS
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. V.28. N3. P.19-30. DOI: 10.25587/SVFU.2021.91.97.002 Scopus OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-85126431134 |
OpenAlex: | W3216721529 |
Цитирование в БД:
БД | Цитирований |
---|---|
Scopus | 1 |