Sciact
  • EN
  • RU

On dual codes in the Doob schemes Full article

Conference IEEE International Symposium on Information Theory
07-12 Jul 2019 , Paris
Journal IEEE International Symposium on Information Theory - Proceedings
ISSN: 2157-8095
Output data Year: 2019, Volume: 2019, Pages: 1917-1921 Pages count : 5 DOI: 10.1109/isit.2019.8849850
Tags Association scheme, Doob graph, MacWilliams identity,
Authors Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

Abstract: The Doob scheme D(m,n'+n'') is a metric association scheme defined on Em4×Fn'4×Zn''4, where E4=GR(4^2) or, alternatively, on Z2m4×Z2n'2×Zn''4. We prove the MacWilliams identities connecting the weight distributions of a linear or additive code and its dual. In particular, for each case, we determine the dual scheme, on the same set but with different metric, such that the weight distribution of an additive code C in the Doob scheme D(m,n'+n'') is related by the MacWilliams identities with the weight distribution of the dual code C* in the dual scheme. We note that in the case of a linear code C in Em4×Fn'4, the weight distributions of C and C* in the same scheme are also connected.
Cite: Krotov D.S.
On dual codes in the Doob schemes
IEEE International Symposium on Information Theory - Proceedings. 2019. V.2019. P.1917-1921. DOI: 10.1109/isit.2019.8849850 WOS Scopus РИНЦ OpenAlex
Dates:
Published online: Sep 26, 2019
Identifiers:
Web of science: WOS:000489100302003
Scopus: 2-s2.0-85073152808
Elibrary: 41689335
OpenAlex: W2976785461
Citing:
DB Citing
Web of science 2
Scopus 2
Elibrary 2
OpenAlex 2
Altmetrics: