Sciact
  • EN
  • RU

On dual codes in the Doob schemes Научная публикация

Конференция IEEE International Symposium on Information Theory
07-12 июл. 2019 , Paris
Журнал IEEE International Symposium on Information Theory - Proceedings
ISSN: 2157-8095
Вых. Данные Год: 2019, Том: 2019, Страницы: 1917-1921 Страниц : 5 DOI: 10.1109/isit.2019.8849850
Ключевые слова Association scheme, Doob graph, MacWilliams identity,
Авторы Krotov D.S. 1
Организации
1 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

Реферат: The Doob scheme D(m,n'+n'') is a metric association scheme defined on Em4×Fn'4×Zn''4, where E4=GR(4^2) or, alternatively, on Z2m4×Z2n'2×Zn''4. We prove the MacWilliams identities connecting the weight distributions of a linear or additive code and its dual. In particular, for each case, we determine the dual scheme, on the same set but with different metric, such that the weight distribution of an additive code C in the Doob scheme D(m,n'+n'') is related by the MacWilliams identities with the weight distribution of the dual code C* in the dual scheme. We note that in the case of a linear code C in Em4×Fn'4, the weight distributions of C and C* in the same scheme are also connected.
Библиографическая ссылка: Krotov D.S.
On dual codes in the Doob schemes
IEEE International Symposium on Information Theory - Proceedings. 2019. V.2019. P.1917-1921. DOI: 10.1109/isit.2019.8849850 WOS Scopus РИНЦ OpenAlex
Даты:
Опубликована online: 26 сент. 2019 г.
Идентификаторы БД:
Web of science: WOS:000489100302003
Scopus: 2-s2.0-85073152808
РИНЦ: 41689335
OpenAlex: W2976785461
Цитирование в БД:
БД Цитирований
Web of science 2
Scopus 2
РИНЦ 2
OpenAlex 2
Альметрики: