Sciact
  • EN
  • RU

Boundary value problems for third–order pseudoelliptic equations with degeneration Научная публикация

Журнал Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X
Вых. Данные Год: 2021, Том: 28, Номер: 1, Страницы: 27-36 Страниц : 10 DOI: 10.25587/SVFU.2021.85.42.003
Ключевые слова Boundary value problem; Degeneration; Existence; Quasi-parabolic equations; Regular solution; Uniqueness
Авторы Kozhanov A.I. 1,2
Организации
1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation
2 Academy of Science of the Republic of Sakha (Yakutia), 33 Lenin Ave., Yakutsk, 677007, Russian Federation

Реферат: We study the solvability of boundary value problems in cylindrical domains Q = Ω × (0, T), Ω ⊂ Rn, 0 < T < +∞, for differential equations h(t) ∂2p+1u / ∂t2p+1+ (−1)p+1 Δu + c(x, t)u = f(x, t), where p is a non-negative integer, h(t) is continuous on the segment [0, T] a function such that ϕ(t) > 0 for t ∈ (0, T), ϕ(0) ≥ 0, ϕ(T) ≥ 0, and Δ is the Laplace operator in spatial variables x1, …, xn. The main feature of the problems under study is that, despite the degeneration, the boundary manifolds are not exempt to the bearing boundary conditions. We proved the existence and uniqueness theorems of the regular solutions, those having all Sobolev generalized derivatives included in the equation. Moreover, we describes some possible enhancements and generalizations of the obtained results. © 2021 A. I. Kozhanov.
Библиографическая ссылка: Kozhanov A.I.
Boundary value problems for third–order pseudoelliptic equations with degeneration
Математические заметки СВФУ (Mathematical Notes of NEFU). 2021. V.28. N1. P.27-36. DOI: 10.25587/SVFU.2021.85.42.003 Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85106027547
OpenAlex: W3180604023
Цитирование в БД:
БД Цитирований
Scopus 1
Альметрики: