Sciact
  • EN
  • RU

Rota–baxter operators on unital algebras Научная публикация

Журнал Moscow Mathematical Journal
ISSN: 1609-3321
Вых. Данные Год: 2021, Том: 21, Номер: 2, Страницы: 325-364 Страниц : 40 DOI: 10.17323/1609-4514-2021-21-2-325-364
Ключевые слова Faulhaber polynomial; Grassmann algebra; Matrix algebra; Rota–Baxter operator; Yang–Baxter equation
Авторы Gubarev V. 1,2
Организации
1 University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austria
2 Sobolev Institute of Mathematics, Acad. Koptyug ave. 4, Novosibirsk, 630090, Russian Federation

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН 0314-2019-0001

Реферат: We state that all Rota–Baxter operators of nonzero weight on the Grassmann algebra over a field of characteristic zero are pro-jections on a subalgebra along another one. We show the one-to-one correspondence between the solutions of associative Yang–Baxter equation and Rota–Baxter operators of weight zero on the matrix algebra Mn(F ) (joint with P. Kolesnikov). We prove that all Rota–Baxter operators of weight zero on a unital associative (alternative, Jordan) algebraic algebra over a field of characteristic zero are nilpotent. We introduce a new invariant for an algebra A called the RB-index rb(A) as the minimal nilpotency index of Rota– Baxter operators of weight zero on A. We show that rb(Mn(F )) = 2n−1 provided that characteristic of F is zero. © 2021 Independent University of Moscow.
Библиографическая ссылка: Gubarev V.
Rota–baxter operators on unital algebras
Moscow Mathematical Journal. 2021. V.21. N2. P.325-364. DOI: 10.17323/1609-4514-2021-21-2-325-364 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000663354100004
Scopus: 2-s2.0-85105351833
OpenAlex: W3155837056
Цитирование в БД:
БД Цитирований
Scopus 9
OpenAlex 11
Web of science 9
Альметрики: