Sciact
  • EN
  • RU

Perfect codes in Doob graphs Full article

Journal Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586
Output data Year: 2016, Volume: 80, Number: 1, Pages: 91-102 Pages count : 12 DOI: 10.1007/s10623-015-0066-6
Tags Perfect codes, Doob graphs, Distance regular graphs
Authors Krotov D.S. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
2 Novosibirsk State University, Novosibirsk 630090, Russia

Abstract: We study 1-perfect codes in Doob graphs D(m,n). We show that such codes that are linear over the Galois ring GR(4^2) exist if and only if there exist integers γ≥0 and δ>0 such that n=(4^{γ+δ}-1)/3 and m=(4^{γ+2δ}-4^{γ+δ})/6. We also prove necessary conditions on (m,n) for 1-perfect codes that are linear over Z4 (we call such codes additive) to exist in D(m,n) graphs; for some of these parameters, we show the existence of codes. For every m and n satisfying 2m+n=(4^μ-1)/3 and m≤(4^μ-5⋅2^{μ-1}+1)/9, we construct 1-perfect codes in D(m,n), which do not necessarily have a group structure.
Cite: Krotov D.S.
Perfect codes in Doob graphs
Designs, Codes and Cryptography. 2016. V.80. N1. P.91-102. DOI: 10.1007/s10623-015-0066-6 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jul 21, 2014
Accepted: Mar 13, 2015
Published online: Mar 26, 2015
Identifiers:
Web of science: WOS:000377188000006
Scopus: 2-s2.0-84925638625
Elibrary: 26753000
OpenAlex: W3102043406
Citing:
DB Citing
Web of science 11
Scopus 12
Elibrary 11
OpenAlex 10
Altmetrics: