Perfect codes in Doob graphs Научная публикация
Журнал |
Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2016, Том: 80, Номер: 1, Страницы: 91-102 Страниц : 12 DOI: 10.1007/s10623-015-0066-6 | ||||
Ключевые слова | Perfect codes, Doob graphs, Distance regular graphs | ||||
Авторы |
|
||||
Организации |
|
Реферат:
We study 1-perfect codes in Doob graphs D(m,n). We show that such codes that are linear over the Galois ring GR(4^2) exist if and only if there exist integers γ≥0 and δ>0 such that n=(4^{γ+δ}-1)/3 and m=(4^{γ+2δ}-4^{γ+δ})/6. We also prove necessary conditions on (m,n) for 1-perfect codes that are linear over Z4 (we call such codes additive) to exist in D(m,n) graphs; for some of these parameters, we show the existence of codes. For every m and n satisfying 2m+n=(4^μ-1)/3 and m≤(4^μ-5⋅2^{μ-1}+1)/9, we construct 1-perfect codes in D(m,n), which do not necessarily have a group structure.
Библиографическая ссылка:
Krotov D.S.
Perfect codes in Doob graphs
Designs, Codes and Cryptography. 2016. V.80. N1. P.91-102. DOI: 10.1007/s10623-015-0066-6 WOS Scopus РИНЦ OpenAlex
Perfect codes in Doob graphs
Designs, Codes and Cryptography. 2016. V.80. N1. P.91-102. DOI: 10.1007/s10623-015-0066-6 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 21 июл. 2014 г. |
Принята к публикации: | 13 мар. 2015 г. |
Опубликована online: | 26 мар. 2015 г. |
Идентификаторы БД:
Web of science: | WOS:000377188000006 |
Scopus: | 2-s2.0-84925638625 |
РИНЦ: | 26753000 |
OpenAlex: | W3102043406 |